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The translational and rotational drag coefficients for a cylinder undergoing uniform 
translational and rotational motion in a model lipid bilayer membrane is calculated 
from the appropriate linearized Navier-Stokes equations. The calculation serves as 
a model for the lateral and rotational diffusion of membrane-bound particles and can 
be used to infer the ‘microviscosity’ of the membrane from the measured diffusion 
coefficients. The drag coefficients are obtained exactly using dual integral equation 
techniques. The region of validity of an earlier asymptotic solution obtained by 
Saffman (1976) is elucidated. 

1. Introduction 
The lateral and rotational motion of lipids and proteins in biological membranes 

plays a crucial role in many life processes. For example, the clustering of membrane- 
bound protein receptors directly mediates many immunological and hormonal re- 
sponses (Catt & Dufau 1977). The use of fluorescent probes and NMR techniques 
enables the measurement of diffusion coefficients of these membrane-bound particles 
to be made (Edidin 1974). Using the Einstein relations 

A = kT/D 

the drag coefficients A, and A, can be computed from the measured translational and 
rotational diffusion coefficients D, and D,. Biophysicists have variously used two- 
and three-dimensional Stokes-law expressions for A, and A, to extract information 
about particle size and the local membrane viscosity (‘ microviscosity ’). These order- 
of-magnitude calculations have revealed microviscosities of the order of 1-10 p 
when the lipid material should have a bulk viscosity of - 0.3 P. This discrepancy 
has given rise in the literature to considerable speculation and confusion (Saffman C% 

Delbriick 1975). This is compounded by the possible existence of long-time tails in 
the velocity autocorrelation function in two dimensions, which has led to the con- 
jecture that there is no hydrodynamics in two dimensions and that the concept of a 
two-dimensional viscosity is inadmissible (Berne & Forster 197 1) .  

Even if one ignores this work, the drag on a translating particle in two-dimensional 
hydrodynamics is essentially nonlinear in the velocity (Batchelor 1967). The existence 
of nonlinear drag forces would then invalidate the Einstein relation and render mean- 
ingless the inference ofthe drag coefficient from diffusion coefficients. The nonlinearity 
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of the drag force in two-dimensional hydrodynamics has its origin in the inability of 
the linearized Navier-Stokes equations to simultaneously satisfy the boundary con- 
ditions imposed on the flow field of the system a t  the particle surface and a t  infinity. 

Tho important point, as developed by Saffman (1976), is that in the real world a 
two-dimensional membrane system is surrounded by a three-dimensional fluid medium 
-the inside and outside of the cellular structure that the membrane bounds. The 
two-dimensional motion of a membrane-bound particle induces flow fields in the 
surrounding medium which exert reaction forces on the membrane. As explained 
later, these forces provide a body force on the membrane and so permit a solution to 
the linearized Navier-Stokes equations in the membrane which can satisfy all the 
boundary conditions simultaneously. In this essentially three-dimensional system, 
there is therefore a linear term in the hydrodynamic drag on a translating membrane- 
bound particle. Further, in a diffusion experiment the velocity is so small that the 
nonlinear terms in the Navier-Stokes equations can be totally neglected. 

The most striking feature of Saffman’s analysis was his finding that the translational 
drag on a membrane-bound object is not well described by a linear Stokes-law expres- 
sion. He showed that the translational drag problem was a singular perturbation 
problem and that the drag coefficient depends nonlinearly on the particle dimensions 
and membrane viscosity. This singular behaviour is a function of the two-dimensional 
nature of the membrane as a hydrodynamic system. 

It is therefore of paramount importance to compute the drag coefficient for some 
canonical problems to understand the intricate relationship of membrane viscosity, 
external medium viscosity and particle size imposed by the constraints of membrane- 
bound motions. Saffman (1976) has calculated the leading-order behaviour of the 
translational and rotational drag coefficients of membrane-bound cylindrical objects 
valid for large membrane viscosities. The purpose of the present work is to extend that 
analysis to intermediate values of membrane viscosity and to elucidate the region of 
validity of the limiting asymptotic forms. The original problem as posed by Saffman 
generates dual integral equation sets which are amenable to exact solution as outlined 
below. 

2. Formulation of the translation problem 
We wish to calculate the drag force acting on a cylinder of radius a and height h 

constrained to move laterally with constant velocity U = UB in a membrane of 
viscosity 7, bounded above and below by fluids of viscosity p l  and p2 respectively 
(see figure 1).  The membrane film has thickness h and its properties will be described 
more fully below. In this section, we set up a boundary-value problem, the solution 
of which describes the flow fields inside and outside the membrane and we evaluate 
the drag force on the cylinder in terms of these flow fields. 

( a )  The exterior flow Jield 

In the region x > 0, the velocity field u(r, 4,  z )  (where ( r ,  4, z )  are the usual cylindrical 
polar co-ordinates with q5 measured from the B direction) satisfies 
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FIGURE 1 .  Model membrane system comprising a cylindrical object of radius a embedded in a 
film of thickness h and viscosity 7. The half-spaces z > 0 and z < - I )  are filled with fluids of 
viscosities ,ul and pz respectively. The system is characterized by the dimensionless constant 

the usual equations for the slow motion of an incompressible fluid. The fluid is a t  rest 
at infinity, i.e. 

The boundary conditions on the plane are 

u(r,$,O) = U 

uz(r, $, 0) = 0 

(0 < r < a) ,  

(0 < r c co). 

Following Saffman (1976), a solution exists of the form 

where 3 (2.10) 

P(r,z)  = -J - -dkkJ,(kr)[s(k)-d(k)]e-kz .  (2.12) 
0 
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The boundary condition (2.5) is automatically satisfied and (2.4) becomes 
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lom dk  Jo(kr) d ( k )  = 2, 

I s,” dk J2(kr) s (k)  = 0, 

r < a .  
(2.13) 

(2.14) 

These integral equations constitute the first two of a set of four simultaneous dual- 
integral equations to be solved for the unknown functions s ( k )  and d(k) .  The other 
two are derived by considering the flow field in the membrane. 

( b )  The membrane flow jields 

The membrane ( -  h c z < 0 )  cannot, because of its molecular nature, be considered 
as a simple fluid film. To maintain the integrity of the membrane, composed as it is 
of inextensible long-chain hydrocarbons, we must require that all velocities within it 
can have no z variation. This fact, coupled with the adoption of the ‘stick’ boundary 
condition at z = 0 and z = - h, implies that, throughout the membrane, the velocity 
field uM is given by 

(2.15) 

where u(r,  9,O) is the exterior flow field evaluated at  x = 0. The exterior flow field 
u(z > 0)  exerts a traction F, on the membrane, where 

Fl(r, 9) = 2.  Q(T, 9, Z)l,=o (2.16) 

and Q is the stress tensor in the exterior flow field. Evaluating Q from its definition in 
terms of the exterior flow field, we have that 

u‘(r, 9, x )  = u(r, 9, 0) (0 > z > - h, r > a)  

(2.17) 

If the membrane interior behaved as a simple liquid, it would be sufficient t o  balance 
F, with the surface traction exerted by the membrane flow field on the half-space 
z > 0. This traction is zero, however, since no z variation in uM is permitted. The force 
which the membrane exerts on the half-space z > 0 has its origin in the mechanical 
stresses set up in the membrane to prevent this z variation. Such forces are not in the 
scope of the present paper and need not concern us further since we may regard this 
force balance at z = 0 to occur automatically. The pressure F, must then be regarded 
as a body force F,/h per unit volume of the membrane in so far as it determines the 
flow fields in the membrane. When the pressure F ,  exerted by the lower half-space 
( z  c - h) is added, the Navier-Stokes equation for the membrane flow field is 

7V2uM - Vp” + ( F 1  + F2)/h= 0.  (2.18) 

The assumption of incompressibility of the membrane, viz. 

V.UM = 0, (2.19) 

yields a subsidiary condition on the solution. Inserting (2.15) into (2.19) and using the 
general solution (2.6)-(2.12), we obtain a third integral equation for the unknown 
functions s (k) ,  d ( k ) ,  viz. 

SomdkkJl(kr)(s(k)-d(k))  = 0 ( r  > a). (2.20) 
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The fourth integral equation is obtained by taking the curl of (2.18) to eliminate the 
membrane pressure pM. Again using (2.15) and (2.6)-(2.12), we obtain, after a little 
algebra, 

J , ( k r ) ( s ( k ) + d ( k ) )  = 0 ( r  > a ) ,  (2.21) 

where (2.22) 

Equations (2.13), (2.14), (2.20), (2.21) constitute a set of simultaneous dual integral 
equations for the functions s ( k )  and d ( k ) .  Since they are of non-standard type (see 
Sneddon 1966), we should first see what information we require of the functions s(k)  
and d(lc). We are concerned here with the calculation of the drag force on the cylinder 
and we require from s ( k )  and d ( k )  only such information as is necessary to determine 
this force. 

( c )  The  drag force on the cylinder 

The force per unit area on the curved wall of the cylinder is given by 

(2.23) f = r . ~ ~ l ~ = ~ ,  
where OM is the hydrodynamic stress tensor in the membrane. The relevant components 
are CTg = 0, (2.24) 

ag = - p M + 2 5 - ,  (2.25) 

h 

8U,M 

(2.26) 
ar r 

To obtain an expression for the membrane pressure pM, we use the symmetry of the 
problem to write 

p’(r, q5, z )  = 7 UPM(r) cos q5 (2.27) 

and, substituting this form into the $ component of the membrane Navier-Stokes 
equation (2.18), we obtain 

P’(r) = 

with the help of (2.6)-(2.12). 

dk (k+:) {krJ,(kr) ( s (k)  + d ( k ) )  -J,(kr) (3d(k) -s(k))} (2.28) 

The total force F, on the cylindrical walls is therefore 

(2.29) 

With the aid of (2.6)-(2.12) and (2.25), (2.26), we may perform the 4 integration to 
obtain 

a 
n k r J z ( k r ) ( s ( k ) + d ( k ) ) - ~ J l ( k r ) ( 3 d ( k ) - s ( k ) )  

(2.30) 

In  a similar fashion, it is straightforward to show that the force FT exerted on the top 
of the cvlinder is 

(2.31) 
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The total drag force on the cylinder is 
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F, = F,+FT+FB 

= -h,U 

where FB is the drag on the bottom of the cylinder and 

(2.32) 

(2.33) 

7 T w  
AT = z ~ h / ~  dk{(ka+s)ka+J,(ka+) ( s ( k ) + d ( k ) ) - ~ J , ( k a + )  (3d(k)-s(k)) 

+ sJ,(ka-) (3d(k) -+I)}, (2.34) 

where we have adopted the notation that 

jOm d k j ( k ,  a*) = lim jow d k j ( k ,  r ) .  (2.35) 
r+af 

It is because of a possible jump discontinuity in the integral 

low dkJ,(W (3d(k) -+)) 

a t  r = a that we have not cancelled the last two terms of (2.34). We introduce the 
notation .Jaw d k j ( k ,  r )  = lim J d k f ( k ,  r )  - lim lom dkf(k, r )  

r-+a+ 0 -a- 

and write the drag coefficient as 

AT = [low dk (ka + 8 )  (ha) J2(ka+) (s(k) + d ( k ) )  - E A S  O0 dk J,(kr) (3d(k) - s (k) )  . ( 2.36) 
0 1 

3. Solution 
The set of simultaneous dual integral equations (2.13), (2.14), (2.20), (2.21) are not 

in the standard form (Sneddon 1966). They can, however, be reducedtoasingleintegral 
equation which can be solved to yield the relevant information needed to calculate 
A, via (2.36). 

We introduce the scaled variables 

(3.1) 
r 
a’ 

x = -  u = a k  

and define new functions s’(u) and d’(u)  by 

s (k)  = us’(u), d(k) = ud’(u). (3.2) 

In the notation of Sneddon (1966)’ the dual integral equations become 

x < 1; 

2 x >  1; 
€S+&2(8’+d’) (x) = --&.-&’+d’) (x), 

X 
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where the modified Hankel transform operator Sq,& is defined by 

S, , f (x )  = 24x4 lorn dt tl-'+J,,,a(xt)f(t). 

To proceed we define a function Q(x) for all x by 

Q(4 = So,,d'(z). 

From (3.4), we have &(x) = 2a (x < 1). 

Application of the inverse operator (Sneddon 1966) 

(3.7) 

(3.10) 

(3.11) 

We have d'(u) defined in terms of the function &(x). We now proceed to determine 
s'(u). Substituting (3.11) in (3.5), we have 

(3.12) 

(3.13) 

The properties of the Erdelyi-Kober operators K,,, and Iq,= are to be found in Sneddon 
(1966). When a particular property is required for our present purposes, it  will be quoted 
without comment and a full discussion of it can be found in Sneddon's book. 

Application of the operator 11, -l to (3.3) yields 

X,,-,S'(X) = 0 (x < 1) (3.14) 

where we make use of the equation 

Iq+a.pSq, a = 8 ,  a+p* (3.15) 

Equations (3.12) and (3.14) constitute a single integral equation for ~ ' ( u )  

Application of the inverse operator So, yields the desired expression 

Consider the function ~ ( x )  defined by 

x ( x )  = Kl,-l&(x) 

for all x. We employ the result that 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Since Q(x) is constant for x < 1 (equation (3.9)) we see that 

x(x) = 0 (x < 1) .  (3.20) 
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If the function Q(x) has a jump discontinuity at x = 1, we define 
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AQ = lim {Q( 1 + 6) - &( 1 - S)}. (3.21) 

The operator Kl,-l applied to Q(x) at x = 1 will therefore produce a term - &AQ6(x - 1) 
in ~ ( x ) .  It follows immediately that 

8+0+ 

where we use the results 

and 

We have, therefore, 

~ T . U K I + U , $  = %,a+$ 

S ,  u w  - 1 I} (.) = 2‘U-aJZT+u(4. 

J l ( U )  s’(u) = d ’ ( ~ )  + AQ 7. 
The result of Saffman (1976), vix. 

s’(u) = d ’ (u )  

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(in our notation), will follow only if AQ is zero. As we shall show, this is indeed the case. 
To proceed, we define a function $(u) by 

AQ Ji(u) d’(u) = - a+- $(u)---. 
7T 4 (  A:) 2 u 

It follows from (3.26) that 
AQ Ji(u) s’(u) =-  a+- $@A)+-- 

lr 4 (  2 u 

(3.28) 

(3.29) 

and (3.30) 

Thus s’(u) and d‘(u) are determined once $(u) is known. We now obtain a single integral 
equation for the function $(u). Substituting (3.28) into (3.4)) we obtain 

f l 0 , O l w  = 4.. (x < 1 )  (3.31) 

with the aid of the definition (3.7) and the result (Abramowitz & Stegun 1965) 

b > a > 0 .  

Substituting (3.29) into (3.3), a similar manipulation yields 

Sl,09(4 = 0 (x < 1) .  

Substituting (3.30) into (3.6) yields 
2 

. f l # , - 2 $ ( 4  = - ; f l 2 , - 3 W  (x > 1). 

(3.32) 

(3.33) 

(3.34) 
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We choose to solve (3.31) and (3.34) as a single pair of dual integral equations whose 
solution must also satisfy (3.33) as a subsidiary condition. A straightforward applica- 
tion of the ErdBlyi-Kober operators together with (3.10) yields the solution of the 

It is easily demonstrated that (3.35) satisfies (3.33) by direct substitution. Using the 
definition of the S , ,  operator, a little algebra enables us to write (3.35) in a more 
conventional form, viz. 

u(u + 6 )  $(u) = - Esinu+~Sad2ra$(2)jsin(u+iL) 7 1 0  U + Z  + sin(u-z) u-2 ). (3.36) 

It is interesting to note that the reduction of the problem to the solution of (3.36) 
has implicitly assumed that e is non-zero. That this is so can be seen by sending 8 to 
zero in the original equation (3.34). The techniques used above to obtain equation 
(3.36) cannot be applied to the resultant pair of dual integral equations. We are 
dealing, therefore, with a singular perturbation problem in the classical sense. 

Before we proceed with the solution of (3.36) let us prove Saffman’s ‘conjecture’ 
that 

From (3.8), we have that 
AQ = 0. 

and 

duuJo(l+U)$(u) 

Q(l-) = ~ ( a + ~ ) I ~ d u u J o ( l - u ) $ ( ~ ) - - ,  A& 
2 

(3.37) 

(3.38) 

where we have substituted (3.28) for d’(u) and used the result (3.32). Subtracting, 

AQ = 8 7T (a+?) A/;duuJ,(uz)$(u), 

where we modify our previous convention, viz. 

The function 

A d u f  ( u , x )  = lim duf(u, 1 +S) - duf(u, 1-6) s 8+0+ s 
can be shown to be a continuous function of x for p 2 0, i.e. 

AIOm du u$(u) J,(zu) = 0. 

(3.39) 

(3.40) 

(3.41) 

Briefly, from Lebesgue’s dominated convergence theorem (Apostol 1974), it follows 
that it is sufficient, in this particular case, to require that 
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exists for continuity of the integral across x = 1. It is straightforward to show the 
existence of 

from the integral equation (3.36) for $(u) (see Hughes 1980 for details). From (3.41) 
and (3.39), it follows that AQ is zero. Equations (3.28) and (3.29) become, therefore, 

d'(u) = s'(u) = - $(u). (3.42) 
4a 
7T 

Using these results, the drag coefficient A,, given by (2.36), can be written in the 
form 

'T = 4n(p1 +p2) aAT(a), (3.43) 

(3.44) where 

is the reduced drag coefficient. Using the expansion (Abramowitz & Stegun 1965) 

AT(€) = - J- rn du uyu + E )  J2(ul+)  $(u) 
0 

the integral equation (3.36) can be written as 

where we define $m = 1 O0 du u2$(u)jzm(u)* 
0 

Multiplying (3.46) by uJ2(ul+) and integrating over u, we obtain 

where we make use of the result 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

which follows from the Weber-Schafheitlin integral (Abramowitz & Stegun 1965). 
Therefore, the reduced drag coefficient AT(€) can be obtained directly from a know- 

ledge of the coefficient $o defined by (3.47). The coefficients $rn can be obtained from 
the equation (3.46) by multiplying by uj,,(u)/(u + a)  and integrating over u. We obtain 
the infinite set of equations 

(3.50) 
using the result (Watson 1944) 

(3.51) 
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It proves convenient to define new coefficients xm(s)  by 

where P,(x) is the Legendre function of degree v. From (3.50), we obtain from the 
Z = 0 equation 

where 

and 

(3.53) 

(3.54) 

(3.55) 

For 1 > 0, we obtain, from (3.50) and (3.52) 

I n  deriving (3.53) and (3.56) we use the result (Abramowitz & Stegun 1965) 

m 

To simplify (3.56), we multiply the (1- 1)th equation by -s2/(4Z+ 1) (4Z- l ) ,  the 
Zth equation by 1-2s2/(4Z+3)(41- l)-s2/(41+l)(4Z+3) and the (Z+l)th equation 
by -e2/(41+ 1)  (41f 3) and add to obtain the result 

where (Watson 1944) 

and 

= ?[ sm,  1-1 z s m .  I 

2 (41 - 3) (41 - 1) (41 + 1) + (41 - 1) (41 + 1)  (41 3) 

are special cases of the Weber-Schafheitlin integral. 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 
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I n  deriving (3.58), we use the result 

which follows from the recurrence relation 
2n+ 1 

jn-l(U) +jn+l(U) = y j n ( u )  

for the spherical Bessel functions (Abramowitz & Stegun 1965). 
The solution of (3.58) is therefore 

1 xm(@ = x k m  -- x m )  
5AT (€) 

where the xg) (i = 1,2) are the solutions of 

and where 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

\ m= 1 

The equation (3.58) is one of many possible matrix equations that may be derived 
from the original integral equation (3.36), e.g. see Hughes (1980). The present scheme 
was adopted due to the simplicity of the matrix elements involved and the facility 
with which asymptotic results may be derived from it. Thus equations (3.66)-(3.68) 
provide a simple numerical scheme for the solution of the translational drag problem. 
I n  appendix A we derive ascending expansions of the functions T ( E )  and tm(c)  needed 
in the computation. However, before proceeding with the calculation of the numerical 
result, we derive the asymptotic behaviour of AT(€) for small E .  

4. Asymptotic behaviour of A,(€) 
We see (from appendix A) that  

T(s )  = ln(2/c) -y+#m--&191n(2/s)+O(s2). 

It follows, from (3.53) and (3.58), that  
1 

s In (2/€) 

for small E ,  and that the ~ ~ ( 0 )  are finite. Therefore, we may write 

xm = Xm(0)  - i % V & l n  (2 /4 + O ( 4 ,  
rn 

where, from (3.58), X m W  = 5 ( t ’ - l ) m m z &  
n=l  

and t‘-l is the inverse of the matrix t‘ defined in (3.59). 
It follows that we may write, from (3.53), 

1 A s  
T( = €[In (2 / s )  - y + E B  - Cs21n (2/s) + 0(s2)1’ 
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where 

and 

37l * 
B = -+ tm(0) (t’-l)mnTk 

8 rn,n=l 

i m  

(4.7) 

In  appendix €3, we show that the inverse matrix t’-I is given by 

To evaluate the constants B and C we consider the sum 

00 

cn = 2 ‘,(@I (t’- ’)m,n* 
m = l  

From the definitions (3.55) and (4.8) and the result (A 15), we have 

Cn = (-1)n(4n+1)P2n(0) 

(4.9) 

dP2n (4.10) = ( - I ) ~  (4n + 1 ) p2,( @)J dx ( 1 - x) - 1 

0 ax  ’ 
where (Abramowitz & Stegun 1965) 

(4.11) 

Integrating (4.10) by parts, we obtain 

Cn = (- l)n+l (4n+ 1) (P2n(0))2. (4.12) 

Therefore, from (4.7) c= *. (4.13) 

Using (4.12) and the definition (3.62) of the Tk, equation (4.6) becomes 

(4.14) 

with the aid of (3.57). By expanding j,(u) in an infinite series of Bessel functions 
Jn(u) and integrating terms by term using the Weber-Schafheitlin integral, the inte- 
gral in (4.14) can be evaluated to yield 

B = 4/77. 
Therefore, for small 8,  

(4.15) 

(4.16) 
4 

AT(€) = s ln(2/s)--y+-s-~e21n(2/s)+O(e2) , 

This may be compared with the expression obtained by Saffman (1976) by a pertur- 
bation-theoretic method, viz. 

)1-l [ (  77 

AT(4 [4ln (2 /4  -7)l-l. (4.17) 

Unlike Saffman’s form, equation (4.16) does not possess a singularity and decays 
monotonically as 6 increases. 
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The asymptotic form of A,(€) for large E is interesting. By noting that the leading- 
order asymptotic expressions for T ( E )  and t,(s) are given by 

(4.18) 
n 

T(E)  N g +  ..., 

n 
t&) - %6,,,+... , 

it follows, from (3.53) and (3.56), that 

(4.19) 

(4.20), (4.21) 

for E large. 
One might expect that, in the limit 8 +- co, the problem would reduce to the drag 

on an infinitely thin disk moving in the plane of the disk. In which case, we should 
have obtained (Happel & Brenner 1965) 

4 
limA,(s) = %. 

E+W 

(4.22) 

The discrepancy between (4.21) and (3.22) is further evidence of the singular nature 
of the translational problem in that even in the limit that the membrane becomes 
infinitely thin, it  continues to influence the flow fields in the surrounding infinite fluid 
media. 

5. The rotational problem 
In  this section, we set up and solve the boundary-value problem for a membrane- 

bound cylinder in uniform rotational motion with angular velocity SZ = 02. We wish 
to derive the retarding torque exerted by the surrounding media on the rotating 
cylinder. 

In  the region z > 0 the appropriate solution of the Navier-Stokes equations (2.1) 
and (2.2) subject to the boundary condition (2.3) takes the form 

The boundary conditions on the z = 0 plane are 

U ( T ,  9,O) = 51 x r 

uJr,  4 , O )  = 0 

( r  c a), 

(0 < Y < co). 
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It follows immediately that 

These equations are the first two of four integral equations that the unknown functions 
P(k)  and @(k) must satisfy. The other pair of equations arise from consideration of 
the membrane flow field. 

As before the stick boundary condition at z = 0 and z = - h  together with the z 
invariance of the membrane velocity field require that the membrane velocity field 
is given by u(r, 4 , O ) .  

The 4 component of the membrane Navier-Stokes equation (2.18) with the aid of 
(5.1)-(5.4) reduces to the integral equation 

dkk k+- J l ( k r ) @ ( k )  = 0 ( r  > a) .  
!om ( “a) (5.9) 

The incompressibility of the membrane (equation (2.19)) yields the integral equation 

(5.10) 

Equations (5.7) and (5.10) constitute a pair of dual integral equations for P(k) .  
Since these equations lack an inhomogeneous term, it follows that 

P ( k )  = 0 (5.11) 

is an acceptable solution. Equations (5.8) and (5.9) constitute a pair of dual integral 
equations for O(k) .  In terms of the reduced variables x and u given by (3.1), the dual 
integral set can be written as 

(5.12) 

with 4(u) = w4- (5.13) 

Before solving this equation set, we need an expression for the torque exerted on 
the cylinder surface. The torque L is given by 

L =  dSrxf i .a ,  (5.14) 

where the integral is over the cylinder surface, fi being the unit normal and r the 
vector distance of a point on the surface normal to the cylinder axis. Evaluating the 
non-zero components U~ and g,.+ of the stress tensor with the aid of (5 .2 ) ,  we obtain, 
from (5.14), 

L = -h,s2, (5.15) 

1 
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where the rotational drag coefficient A, is given by 
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AR = 47% + P W M E ) ,  (5.16) 

The second term in (5.17) is the jump in the integral across x = 1 in the notation (3.40). 
To solve (5.12), we use the notation of Sneddon (1966) to write the integral equations 

(cs 

The solution of this equation set is (Sneddon 1966) 

(5.19) 

More conventionally, (5.19) may be written as the integral equation 

(u + 8) $(.) = Ejl(U) +- d z z  $(z )  [j ,(u - 2) -j& + x ) ] .  (5.20) 
n o  'S" 

Using the expansion (3.45), the solution of (5.20) can be written as 
- m  

(5.21) 

where the coefficients $Js) are defined as 

d z ~ $ ( z ) j 2 ~ + 1 ( z )  (m = 0,192, ...). (5.22) 
6~ 

$ m ( 4  =- (9 n 

It follows from (5.20), by an argument identical to that of Q 3, that 

AI0" duJ2(ux) $(u) = 0,  (5.23) 

80 that the reduced rotational drag coefficient AR(B) can then be written as 

Multiplying (5.21) by J2(uZ+) and integrating over u, we obtain the result 

(5.24) 

(5.25) 

with the aid of the Weber-Schafheitlin integral (Abramowitz & Stegun 1965). As in 
the translational problem, we need only to calculate the coefficient $ 0 ( ~ )  in order to 
compute A,(€). 

A suitable scheme for computing A,(€) can be derived as follows. Multiplying (5.21) 
by ujw+,(u)/(u + E )  and integrating over u, we obtain the set of simultaneous equations 

(5.26) 
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We define the new coefficients 

a m ( € )  = $m(€)/$o(€) (m = 1,2, *.*). 

Then, the 1 = 0 equation of (5.26) can be written 

where 

365 

(5.27) 

(5.28) 

(5.29) 

For Z non-zero, the remaining equations of (5.26) can be written 

The matrix elements of this simultaneous equation set can be simplified (as in the 
translational problem) by multiplying the ( I  - 1)th equation by - s2/(4Z + 1) (41 + 3) 
and the Zth equation by 1 - 2e2/(4Z+ 1) (4Z+ 5) and the ( I+  1)th equation by 
-c2/(4Z+ 3) (4Z+ 5) and adding to obtain 

( -  l )m+l+l  
- - (Z,m = 0,1,2, ...) (5.32) 

2[4(m-Z)2-1](Z+m+l)(Z+m+2) 

n4,m+1 (1, m = 0, 1,2, ...). 
2(4m + 7) (4m + 5) (4m + 3) 

+ 

The solution of (5.31) is therefore 

2 E  
3 1 5AR(E) am(€) = a2 (4 , 

where the a$ are the solutions of 

00 

(R2,m-€R;,m)ag = 
m=l (i = 2). 

The rotational drag coefficient A,(€) is, from (5.28), 

(5.33) 

(5.34) 

(5.35) 

(5.36) 
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Equations (5.35) and (5.36) provide a suitable numerical scheme for the exact numeri- 
cal computation of A,(€). Ascending expansions of the functions suitable for their 
numerical evaluation are given in appendix A. 

6. Asymptotic behaviour of A,(€) 

set of equations reduces to 
To derive the asymptotic form of A,(€) we return to equation (5.26). At E = 0, this 

We make use of the result (see appendix B) that the inverse of the infinite matrix 
whose elements are Rz,m is given by 

where 

(Abramowitz & Stegun 1965). Applying this inverse matrix to (6.1), we obtain 

d m ( 0 )  = ( W m , o  (6.4) 

(6.5) 
- 3 ( - i ) y 4 m + 3 ) ( m + 8 )  
- 

n-(m + 1) 

using the results (Abramowitz & Stegun 1965) 

Pl(X) = x, 
n+ 

JO1dx~2m+1(x) = 2r(Qmm) r ( m + 2 ) -  

I n  particular 90(0) = f. 
If we write 9 m ( e )  = + & M E )  

then (5.26) can be written as 

with the aid of (6.2) and (6.4). At E = 0 equation (6.9) reduces 

Applying the inverse matrix to (6.10)' we obtain 

( I  = 0, 1 ,2  ,...) (6.9) 

to 

(6.10) 

(6.11) 
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with the aid of (6.2) and (B 6). In particular, form = 0 we have 

4 
3n 

=- 

from Watson (1  944). 
From (5.25), we have then, for small E ,  

1 8  
AR(E) = -+- +O(E). 

8 3n 
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(6.13) 

(6.14) 

(6.15) 

(6.16) 

The leading term is that obtained by Saffman (1976). The accuracy of these asymptotic 
forms will be tested in the next section. 

Finally, we derive the large-s form of A,(€). For E large, we have that 

(Abramowitz & Stegun 1965). Thus, for large E ,  (5.26) reduces to 

so that 

(6.17) 

(6.18) 

(6.19) 

This result is in agreement with the rotational drag coefficient for an infinitely thin 
disk (Happel & Brenner 1965). 

7. Results and discussion 
The numerical computation of A,(€) proceeds as follows: For a given value of 6, 

we evaluate T ( s )  and t,(s) (m = 1 , 2 , .  ..) using the expansions derived in appendix A. 
Then, by truncating equation (3.67) to yield a finite set of simultaneous equations, 
we can solve to obtain the two solutions x$)(s) (i = 1,2) .  The translational drag 
coefficient is calculated from (3.68). 

It is found that the neglect of all coefficients xm(s) above ~ ~ ~ ( 8 )  produces negligible 
error in x , ( B ) .  In  figure 2 we plot the curve A,(€) obtained by this procedure and 
compare it with the asymptotic results of Saffman (4.17) and the present work (4.16). 
We note that Saffman's result is an excellent approximation to the exact solution for 
s c 0.1 whereas the result (4.16) extends the agreement to E < 1.  

The calculation of AR(s) parallels that for A,. We evaluate r,(s) using the expan- 
sions given in appendix A and Rl,,(€) and R;,,(s) using equations (5.32) and (5.33). 
Equations (5.35) may be truncated, with negligible error, at  about @50 and so yield 
@$). A,(€) then follows from equation (5.36). 



368 B. D .  Hughes, B .  A .  Pailthorpe and L. R.  White 

20 

15 

i 
10 

5 

20 

15  

-2 

10-2 lo-' 1 10 

FIGURE 2. 

E 

10-2 lo-' 1 10 
E 

FIGURE 3. 

FIGURE 2. The reduced translational drag coefficient AT(€) defined by equation (3.43) as a func- 
tion of E .  The continuous line is the exact numerical calculation and the dotted lines are (a) 
the asymptotic result of Saffman (1976) (equation (4.17)) and ( b )  the asymptotic result of the 
present work (equation (4.16)). 

FIGURE 3. The dimensionless rotational drag coefficient A,(€) defined by (5.16) as a function 
of B. The continuous line is the exact numerical result. The dotted lines are the asymptotic 
results of (a )  Saffman (1976) and (6) the present work (equation (6.16)). 

Figure 3 displays the resultant curve for RR(E); the asymptotic results of the present 
study (6.16) and of Saffman are also shown. Again Saffman's result is good for E < 0.1 
while equation (6.16) is acceptable for B < 1. 

A quantity of interest in diffusion studies is the ratio of diffusion coefficients 

We see that the simultaneous measurement of DT and DR enables the values of E to 
be obtained unambiguously from (7.1) (with an appropriate choice of the radius a). 
Subsequent use of the individual measurements of D, and DR lead to the inference 
of bothp, +p2 and 7. It should be noted that in real membranes the exterior viscosities 
in the vicinity of the membrane are by no means well determined. For small E ,  equa- 
tions (4.16) and (6.16) yield 

... -- - 
a2D, 4 

e21n (2,'s) - y+- E - $E21n ( 2 / ~ )  + O ( @ )  
7T 

(7.2) 



Drag on a cylinder moving in a membrane 369 

5 c 
4 

3 

4 
< . 

2 

1 I \ 

10-2 10-1 1 10 
E 

FIGURE 4. The ratio D,/a2D, = &/Ar as a function of E .  The continuous line is the exact 
numerical result and the dottedlines are the asymptotic results of (a) Saffman (1976) and (b)  the 
present work (equations (4.16) and (6.16)). 

I n  figure 4 we plot the ratio DT/a2DR as a function of 8 obtained from the exact 
numerical solution of the problem and compare it with the asymptotic form (7.2).  
For 6 < 0.4 the two results are in good agreement. 

The implication of this and Saffman’s study is that  the unusually low diffusion co- 
efficients measured in experimental membrane studies may have their origin not only 
in a large membrane viscosity, but also in the interplay of geometry (i.e. the ratio a/h)  
and the viscosity of the external medium facilitated by the inextensibility of the 
membrane lipids. 

We point out finally that failure of reasonable values of a, h, ,u and 7 simultaneously 
to  predict measured D, and D, will indicate inapplicability of the present model to  
membrane systems. I n  particular we do not expect membrane-bound proteins to  be 
flush with the membrane interface, as shown in figure 1, but rather to  protrude into 
the external media. Neglect of the ends is only permissible if the experimental results 
indicate that e is small when the dominant contribution to the drag comes from the 
cylinder walls . 

The authors would like to acknowledge Professor P. G. Saffman for his most con- 
structive comments on an earlier version of this work. 
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Appendix A 

the integral equation (3.36).  We have, from the definition (3.55), 
We develop here an expansion of the tm(e) functions which arise in the solution of 

tm(4  = du 24-1 [ 1 + 3 -1jo(U)j2m(24). 

The integral in (A 1) is in the classic form of a Mellin transform convolution and, 
taking the Mellin transform of (A l), we obtain (Erdelyi 1954) 

dt( tm(i5);  E -+ s) = sinns - ~md~u"- ' jo (u ) j ,m(u)  (0 < Res < 1) 

The inverse transform is 

t , ( E )  = - d s ~ - ~ A ( t , ( ~ ) ;  E -+ s) (0  < c = Res < 1).  (A 4) 

Closing this contour to the left and evaluating the residues at  the poles of the integrand 
generates the ascending expansion in E ,  which will be suitable for evaluating t,(c) 
provided E is not too large. We obtain 

t,(s) = t ~ ' ( E ) + t ~ ) ( E ) + t ~ ' ( E ) ,  
where 

We note that lim tm(c) is finite (for m > 0). 

The T ( E )  function given by 
E-+O 

can be evaluated in an identical fashion. In  this case 

&25 r(gs) r(; - $) A ( T ( € ) ;  E -+ s} = (0 c Res < 1) .  (A 10) 4 sin ns r2($ - 8s) I?( 1 - Is) 2 

Closing the inversion contour to the left and evaluating the residues at  the poles of 
the integrand, we obtain 

T(E) = T y E )  + T@'(S), (A 11)  
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where 

The expansions for t,(s) and T(s)  are convergent for all E ;  however, for practical 
computation we are restricted to E c 10. For larger values of E ,  one may, of course, 
derive descending expansions for t,(e) and T ( E )  from their contour integrals by closing 
to the right. However, such large values of E are of no physical interest. 

The ascending expansion of the rm(E) functions defined by (5.29) are obtained in an 
identical manner and only the result will be reported, viz. 

Appendix B 

From (4.8) and (3.59) we have that 
We wish to prove here that (4.8) is the inverse of the matrix t' defined by (3.59). 

where we have made use of the result 

which follows directly from a differentiation of (3.57) with respect to x. 
Evaluating the u integration by the Weber-Schafheitlin formula, we obtain 

Integrating by parts, and using the result (Abramowitz & Stegun 1965) 

; [ (1 -39) @(@I y = - v(v + 1 )  qx), ax 
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we obtain 
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which is the desired result. 

similar manner to the proof above using the results (Watson 1944) 
The proof that (6.2) is the inverse of the matrix Rl,rn defined by (5.32) follows in a 

and lom duj,,+,(u) Jo[u( 1 - x Z ) ~ ]  = - n4r(z+1)P2t+l(Z) - (0 < x < l), (B 7) 2 r(z+;) 
and the orthogonality of the odd Legendre polynomials on the range 0 < x < 1.  
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